1st Year M.E. Electrical Power System: Semester-II: Course Outcomes

EP2201: Power System Dynamics & Control

Course Outcomes:

After successful completion of this course the students will be able to

CO 1 : Solve Power System Stability Problems.

CO 2: Understand the Modeling of Power System Components for Stability Studies.

CO 3: Perform Analysis of Single machine and multi machine Systems.

CO 4: Interpret Eigen value analysis.

CO 5: Understand Small signal Angle Instability.

CO 6: Do the analysis of voltage instability.

EP2202: Electrical Machines analysis & Control

Course Outcomes:

After successful completion of this course the students will be able to

CO 1: Apply conventional analysis methods to solve problems related to electrical machines.

CO 2: Evaluate the accuracy of coordinate transformations and critically assess the effectiveness of applied generalized theory in solving real-world problems.

CO 3: Apply transformation techniques to analyze and model three-phase induction motors in different frames.

CO 4: Evaluate the efficiency and applicability of different control techniques in diverse operational conditions for three-phase synchronous motors.

CO 5 : Explain the principles and significance of the (d-q) machine model for permanent magnet synchronous motors.

CO 6 : Analyze the impact of steady-state and transient performance on the stability and efficiency of power systems.

EP2203: Power Quality Improvement Techniques

Course Outcomes:

After successful completion of this course the students will be able to

CO 1 : Illustrate the concept, need, and standards of Power Quality.

CO 2 : Explain the fundamental, cause, and effects of harmonics.

CO 3: Select method for mitigation of harmonics.

CO 4: Make use of active power filters for power quality improvement.

EP2204: HVDC Transmission

Course Outcomes:

After successful completion of this course the students will be able to

CO 1: Compare HVDC and HVAC Transmission system on the basis of economic operation, stability limit and reactive power limit.

CO 2: Calculate transmission line parameters and sequence impedances for different types of lines

CO 3: Analyse various control methodologies and characteristics of converters.

CO 4: Explain series and parallel operation of converters.

CO 5: Elaborate the concept of corona phenomenon and electrostatic field of EHV lines.

CO 6: Demonstrate the knowledge of lightning phenomenon along with the theories of charge formation in clouds.

EP2205: Application of Power Electronics to Power System

Course Outcomes:

After successful completion of this course the students will be able to

CO 1: Understand the application of power electronics to power systems.

CO 2: Apply the concept of load compensation and reactive power control to AC power system.

CO 3 : Design and develop the various FACTS controllers.

CO 4: Understand and analyze the various Power Quality Problems.

CO 5: Design and develop the various techniques for mitigations of power quality problems.